## Space-Code Bloom Filter for Efficient Traffic Flow Measurement

Abhishek Kumar, Jun (Jim) Xu
Networking and Telecommunications Group
College of Computing
Georgia Institute of Technology
{akumar,jx}@cc.gatech.edu

Li (Erran) Li Bell Laboratories erranlli@bell-labs.com

Jia Wang
AT&T Labs - Research
jiawang@research.att.com

#### **Problem Statement**

Goal: To keep track of the total number of packets belonging to **each** flow at high speed links.

Applications like traffic characterization, anomaly detection, perflow QoS etc., need to know the size of all flows.

Definition of Flow: All packets with the same flow-label. The flow-label can be defined as any combination of fields from the IP header, e.g <Source IP, source Port, Dest. IP, Dest. Port, Protocol>.

## Why is per-flow measurement hard?

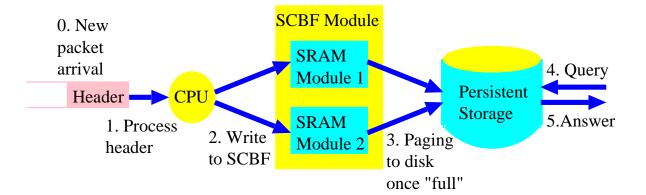
- Majority of the packets belong to large flows, yet a majority of the flows are small.
- High cost of maintaining per-flow data-structures. Amortization is difficult.
- No clear definition of the "end" of a flow.

## Related Approaches

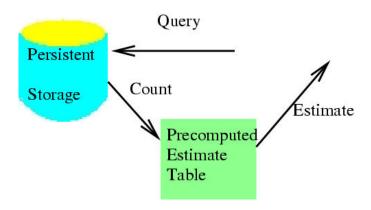
Sampling Sample packets with a fixed probability p and trace/process headers of sampled packets. This is the approach used by Cisco Netflow.

- Flow-sizes can be inferred from sampled data.
- Space-intensive.
- Inaccurate for small flows.

#### Keep track of elephants


- Fast algorithm to filter packets from large flows. [Estan and Varghese, 2002]
- Maintain counters for large flows only.
- Success in tracking the largest few flows (e.g. carrying  $\geq 1\%$  of the total traffic) with limited memory.

#### Our Solution – Space-Code Bloom Filter (SCBF)


- Tracks all flows from mice to elephants.
- Provides approximate estimate of flow-size.
- The relative error in estimation is the same for all flow sizes.
- The approx. estimates are close to the actual flow-size with high probability.

## Operation of Space-Code Bloom Filter (SCBF) – Insertion Phase

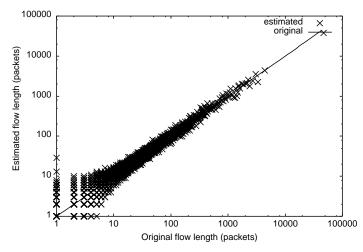
- Measurement proceeds in epochs (e.g. 10 second).
- Maintain an aggregate synopsis data-structure.
- Update the data-structure on every packet arrival.
- Write-only data structure → fast updates, low hardware complexity.
- Copies of the synopsis are paged to disk periodically.



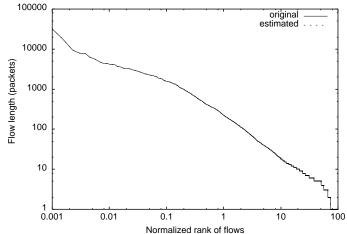
# Operation of Space-Code Bloom Filter (SCBF) – Query Phase



- Queries provide a flow-label and ask for its size.
- Obtain a "count" from the data-structure and then lookup a precomputed table to return approximate size of the flow.
- This provides approximate estimates that have low relative error with high probability.


# Design of the aggregate data-structure

- Bloom-filters answer set-membership questions with high accuracy.
- Space-Code Bloom Filter answers multiset-membership questions with high accuracy.
- Use a number of "virtual" Bloom-filters, thus spreading the multiplicity information over **space**.
- Hash functions allow us to "isolate" flows from each other, thus spreading the multiplicity information over **code**.
- A **Space-Code** Bloom filter represents a large number of statistical estimators in parallel.


# Performance of SCBF - complexities

- Computational complexity compute 5 hash-fuctions and write 5 bits per packet.
- Space complexity 4 bits of storage required for each packet.
- Can operate at OC768 (40 Gbps) with 5 ns SRAM.
- More than 80% responses are within  $\pm 25\%$  of the actual value.

# Accuracy of SCBF

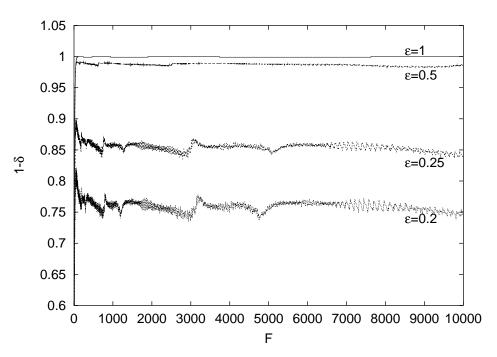


(a) Original vs. estimated flow size. Note that both axes are on logscale.



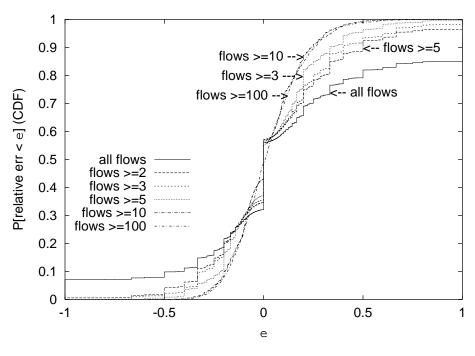
(b) Distribution of the original and estimated flow size.

#### Conclusions


- Space-Code Bloom Filters can track the **approximate** size of every flow.
- Per-flow accounting without per-flow state.
- The relative error in approximation is same for all flow-sizes.
- Very fast (upto OC768) implementations possible due to "write-only" nature of updates.
- Design parameters of SCBF can be tuned to trade storage space and CPU cycles for accuracy.

# Acknowledgments

We thank Oliver Spatschek for providing us with the traffic traces.


# Questions ???

# Accuracy of SCBF using Maximum Likelihood Estimation (MLE)



(c) Theoretical accuracy of MLE using 32 groups.

# Accuracy of SCBF using Maximum Likelihood Estimation



(d) CDF of relative error for flows of various size